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DYNAMICS OF A SLENDER BEAM WITH AN
ATTACHED MASS UNDER COMBINATION
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PART I: STEADY STATE RESPONSE
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The non-linear behaviour of a slender beam with an attached mass at an
arbitrary position under vertical base excitation is investigated with
combination parametric and internal resonances. The governing equation which
retains the cubic non-linearities of geometric and inertial type is discretized by
using Galerkin's method and the resulting second order temporal di�erential
equation is then reduced by the method of multiple scales to a set of ®rst order
non-linear di�erential equations. Steady state response and its stability are
obtained numerically from these reduced equations. Super- and sub-critical
Hopf bifurcations in the trivial as well as non-trivial branches and the saddle-
node or fold type bifurcations in the non-trivial branches of the response
curves are found. The e�ect of damping, amplitude as well as frequency of base
excitation, the mass ratio and the location of the concentrated mass on the
non-linear response of the system having internal resonance of 3:1 is studied at
length. Hysteresis, saturation and blue sky catastrophe phenomena with
bistability interval in the response curves are observed for a wide range of
bifurcating parameters.

# 1999 Academic Press

1. INTRODUCTION

Many mechanical members can be modelled as a cantilever beam with an
attached mass subjected to base excitation at a frequency in the neighbourhood
of the sum of the frequencies of the lower two modes. Such a system is said to
be under combination parametric resonance and has been studied by many
researcher [1±5]. Most of these cases are characterized by linear Mathieu±Hill
equations and a few of them are of Duf®ng type Mathieu±Hill equations [6±9].
Asmis and Tso [10] analyzed the response of two-degree-of freedom systems with
cubic non-linearities to a combination parametric resonance in the presence of
one-to-one internal resonances. They found that internal resonance reinforces
the combination resonant response and investigated the in¯uence of detuning on
the response. Tezak et al. [11] studied a clamped±clamped beam with cubic
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geometrical non-linearities under combination parametric excitation in the
presence of internal resonance of type three-to-one. Nayfeh [12] and Nayfeh and
Jebrill [13] investigated the response of two-degree-of-freedom systems with
quadratic non-linearities to parametric excitation. Nayfeh [14] considered the
response of multi-degree-of-freedom systems with quadratic non-linearities to a
harmonic parametric excitation in the presence of an internal resonance of the
combination type. Cartmell and Roberts [15] studied simultaneous combination
resonances in an autoparametrically resonant system.
Nayfeh and Zavodney [16] dealt with the response of two-degree-of-freedom

systems with quadratic non-linearities to a combination parametric resonance
and found that, in addition to the trivial and non-trivial steady state responses,
periodic solution and Hopf bifurcation exist in the non-trivial branches. Streit
et al. [17] analyzed combination parametric resonance leading to periodic and
chaotic response in two-degree-of freedom systems with quadratic non-linearities
in the presence of one-to-two internal resonances. Systems having quadratic or
cubic non-linearities with internal resonances experiencing external excitation
exhibit multi-valued steady state response, turning point bifurcation, periodic
response and period-doubling bifurcation leading to chaos [5].
To date simultaneous parametric and internal resonance cases are limited to

the systems like hinged±clamped beam [11] (3:1 internal resonance and cubic
geometric non-linearities), coupled bending±torsion vibration of cantilever beam
[18] and auto-parametric vibration of two- or three-beam structures with
concentrated masses [15]. For a simple base excited cantilever beam with a
concentrated mass, Kar and Dwivedy [19] found that, for certain values of mass
ratios (i.e., the ratio of the concentrated mass to the mass of the beam) and/or
location of the attached mass, internal resonance of three-to-one is possible and
investigated many interesting chaotic phenomena in addition to periodic,
quasiperiodic and ®xed point responses for principal parametric resonance only.
The present work is concerned with the non-linear steady state response of the
previous system to combination parametric and internal resonances. The method
of multiple scales and suitable numerical techniques are used to study the
resonant behaviour of the system.

2. ANALYSIS

2.1. EQUATION OF MOTION

The equation of motion of a uniform cantilever beam of length L carrying a
mass m at an arbitrary position d from the ®xed end and subjected to base
motion (Figure 1) can be given by [20]

EI vssss � 1

2
v2s vssss � 3vsvssvsss � v3ss

� �
� 1ÿ 1

2
v2s

� �
f�r�md�sÿ d��vtt � cvtg

� vsvss

�L
s

f�r�md�xÿ d��vtt � cvtgdxÿ �J0d�sÿ d��vs�tt�s ÿ �Nvs�s � 0, �1�
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subject to the boundary conditions

v�0, t� � 0, vs�0, t� � 0, vss�L, t� � 0, vsss�L, t� � 0, �2�
where

N � 1

2
r
�L
s

�x
s

�v2s �tt dZ
� �

dx� 1

2
m

�L
s

d�xÿ d�
�x
0

�v2s �tt dZ
� �

dx

�m�ztt ÿ g�
�L
s

d�xÿ d� dx� rL 1ÿ s

L

� �
�ztt ÿ g�

ÿ Jod�sÿ d�f1=2vsttv2s � vsv
2
stg, �3�

with the notation

� �t �
@� �
@t

; � �s �
@� �
@s

etc:

E, I and r are respectively the Young's modulus, the second moment of area of
the cross-section of the beam and mass per unit length of the beam, Jo is the
moment of inertia of the concentrated mass m about its centroidal axis
perpendicular to the X±Y plane, v is the lateral displacement of the beam, g, c
and z are respectively the acceleration due to gravity, the coef®cient of viscous
damping and the displacement of the base, s is the distance of a point on the
beam, measured along the center line of the de¯ected beam from the base, t is
the time and d is the Dirac delta function.
The assumptions made in the derivation of equation (1) are that the beam is

slender and oscillates only in a transverse plane, i.e., no out of plane motion

X

Y

L

d

sz(t)

d

v(  ,t)

Figure 1. Vertically base-excited cantilever beam carrying a lumped mass.
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takes place and the mass is not positioned at the tip as it would violate the
fourth boundary condition.
Let the base motion be harmonic, that is

z�t� � Zo cosOt: �4�
Assuming the solution of equation (1) in the form

v�s, t� �
X1
n�1

rcn�s�un�t�, �5�

where r is a scaling factor, cn(s) is the shape function of the nth mode (see
Appendix), and un is the time modulation of the nth mode, applying Galerkin's
method and using the non-dimensional parameters

x � s

L
z, b � d

L
, t � y1t, on � yn

y1
,

l � r

L
, m � m

rL
, G �Zo

Zr
, J � Jo

rLr2
, f � O

y1
�6�

we have the temporal form equation (1) as

�un � 2ezn _un � o2
nun ÿ e

X1
m�1

fnmum cosft

� e
X1
k�1

X1
l�1

X1
m�1
fanklmukulum � bnklmuk _ul _um � gnklmukul�umg � 0, �7�

where �_� � d� �=dt. The coef®cients are de®ned in the Appendix. The small
dimensionless parameter e is introduced as a book-keeping device to indicate the
smallness of damping, non-linearities and excitation.
So, one has n number of coupled equations with cubic geometric non-linearity

anklm and inertial non-linearities bnklm , g
n
klm , where n represents the number of

modes participating in the resulting oscillation, which do not lend to the closed
form of solutions. Hence, approximate solutions will be sought by using the
method of multiple scales (section 2.3).

2.2. PHYSICAL EXAMPLE

A metallic beam is considered with the following properties: L� 125 mm,
I� 0�04851 mm4, E� 0�209366106 N/mm2, Zr� 1 mm, c� 0�1 N/ s/mm2,
r� 0�03332 gm/mm, m� 3�68979, J� 0�959, b� 0�25. The roots of the
characteristic equation (see Appendix) are found numerically to be k1� 1�80097,
k2� 3�2836 and the corresponding non-dimensional natural frequencies are
o1� 1 and o2� 3�33179. The book-keeping parameter e and scaling factor l are
taken as 0�001 and 0�1, respectively. The coef®cients of damping zn, excitation
fnm and non-linear terms, anklm , b

n
klm , g

n
klm are found to be of the same order. The

values of other required parameters expressed in the Appendix are calculated to
be: ae11� 2�54149, ae12�ÿ12�2027, ae21� ÿ6�63699, ae22� ÿ 195�55, Q131�
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14�62282, Q31� 7�84674, f �11 � 0�2623, f �12 � 0�048847, f �21 � 0�16996,
f �22 � 0�6797, z�1 � 0�04756, z�2 � 0�018346.

2.3. PERTURBATION SOLUTION

The approximate solution of equation (7) can be obtained using the method of
multiple scales. Let

un�t; e� � uno�To ,T1� � eun1 � . . . , To � e0t, T1 � e1t: �8, 9�
Substituting equations (8) and (9) into equation (7) and equating the coef®cients
of e0 and e to zero, we have

D2
o uno � o2

n uno � 0 �10�

D2
oun1 � o2

nun1 � ÿ
�
2xnDouno � 2DoD1uno

X2
n,m�1

fnmumo cosft

�
X
klm

�anklm ukouloumo � bnklmukoDouloDoumo � gnklm uko uloD
2
oumo�

�
� 0�11�

where Do� @/@To and D1� @/@T1. The solution of equation (10) is given by

uno � An exp�ionTo� � cc, �12�
where cc indicates the complex conjugate of the preceding terms. Now to
determine un1 one has to consider the particular case of external and internal
resonances.

2.4. COMBINATION RESONANCE (f1o1�o2)

Since o213o1, to express the nearness of f to o1�o2 the detuning
parameters s1 and s2 are introduced as

o2 � 3o1 � es2, f � 4o1 � es1 � o1 � o2 � e�s1 ÿ s2�: �13, 14�
Substituting equations (12)±(14) into equation (11) and eliminating the secular

terms, one has, for n� 1,

2io1�z1A1 � A01� ÿ
1

2
f12 �A2 expfie�s1 ÿ s2�Tog

�
X2
j�1

ae1j Aj�AjA1 �Q131A2
�A2
1 exp�ÿies2To� � 0, �15�

for n� 2,
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2io2�z2A2 � A02� ÿ
1

2
f21 �A1 expfie�s1 ÿ s2�Tog

�
X2
j�1

ae2j Aj�AjA2 �Q31A
3
1 exp�ÿies2To� � 0, �16�

and for n> 2,

2ion�znAn � A0n� �
X2
j�1

ae2j Aj�AjA2 � 0: �17�

As the higher modes (n> 2) are neither directly excited nor indirectly excited
by internal resonance, they die out due to the presence of damping. So, for this
case, our n-dimensional system reduces to a two-dimensional one as modal
interaction is limited to two modes only.
Now introducing

An � 1
2an�T1� expfibn�T1�g, �18�

where an and bn are real, into equations (15) and (16) and separating the results
into real and imaginary parts, one has the following set of autonomous
equations.

2o1�z1a1 � a01� ÿ
1

2
f12a2 sin g1 �

1

4
Q131a2a

2
1 sin g2 � 0 �19�

ÿo1a1�s1 ÿ g01 ÿ g02� ÿ f12a2 cos g1 �
1

2

X2
j�1

ae1ja2j a1 �
1

2
Q131a2a

2
1 cos g2 � 0, �20�

2o2�z2a2 � a
0
2� ÿ

1

2
f21a1 sin g1 ÿ

1

4
Q31a

3
1 sin g2 � 0 �21�

ÿo2a2�3s1 ÿ 4s2 ÿ g02 ÿ 3g01� ÿ f21a1 cos g1 �
1

2

X2
j�1

ae2ja2j a2;�
1

2
Q31a

3
1 cos g2 � 0,

�22�
where

g1 � ÿb1 �
1

4
s1T1, g2 � ÿb2 ÿ s2T1 ÿ 3

4
s1T1

� �
: �23; 24�

Since, for steady state a01 � a02 � g01 � g02 � 0, equations (19)±(22) yield

2o1z1a1 ÿ
1

2
f12a2 sin g1 �

1

4
Q131a2a

2
1 sin g2 � 0, �25�
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ÿo1a1s1 ÿ f12a2 cos g1 �
1

2

X2
j�1

ae1ja2j a1 �
1

2
Q131a2a

2
1 cos g2 � 0, �26�

2o2z2a2 ÿ
1

2
f21a1 sin g1 ÿ

1

4
Q31a

3
1 sin g2 � 0, �27�

ÿo2a2�3s1 ÿ 4s2� ÿ f21a1 cos g1 �
1

2

X2
j�1

ae2ja2j a2 �
1

2
Q31a

3
1 cos g2 � 0: �28�

Four types of solutions are possible, namely, a1� a2� 0, a1 6� 0 and a2 6� 0,
a1 6�0 and a2� 0, a1� 0 and a2 6� 0. For the third case,

a1 �2f2o1s1=ae11g1=2: �29�
For the fourth case,

a2 �2f8o2�3=4s1 ÿ s2�=ae22g1=2: �30�
The ®rst order solution of the system can be given by

u1 � a1 cosf�o1tÿ g1g, u2 � a2 cosf�o2tÿ g2g, �31, 32�
where

�o1 � o1 � es1=4, �o2 � 3�o1: �33, 34�

2.5. STABILITY OF STEADY STATE RESPONSE

As the above reduced equations contain terms like a1g01 and a2g02 , the
perturbed equations will not contain the perturbations Dg01 or Dg02 for trivial
solutions. So, stability of trivial points cannot be obtained by perturbing the
above reduced equations. Hence, to overcome this dif®culty, introducing the
transformation

pi � ai cos gi , qi � ai sin gi , �35, 36�
and carrying out trigonometric manipulations, one arrives at the following
normalized reduced equations:

2o1 p01 � z1p1 �
1

4
s1q1

� �
ÿ 1

2
f12q2 ÿ 1

4

X2
j�1

ae1jq1� p2j � q2j �

� 1

4
Q131fq2�q21 ÿ p21� � 2p1p2q1g � 0, �37�
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2o1 p01 � z1q1 ÿ
1

4
s1p1

� �
ÿ 1

2
f12p2 � 1

4

X2
j�1

ae1jp1� p2j � q2j �

� 1

4
Q131fp2�p21 ÿ q21� � 2p1q1q2g � 0, �38�

2o2 p02 � z2 p2 � s2 ÿ 3

4
s1

� �
q2

� �
ÿ 1

2
f21q1 ÿ 1

4
Q31fq1�3p21 ÿ q21�g

ÿ 1

4

X2
j�1

ae2jq2� p2j � q2j � � 0, �39�

2o2 q02 � z2q2 � s2 ÿ 3

4
s1

� �
p2

� �
ÿ 1

2
f21p1 � 1

4
Q31fp1�p21 ÿ 3q21�g

� 1

4

X2
j�1

ae2j p2� p2j � q2j � � 0: �40�
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Figure 2. Frequency response curve for undamped system with G� 10, m� 3�69, b� 0�25,
o2� 3�33179; sm: single mode.
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Now perturbing the above equations, one gets

fDp01, Dp02, Dq01,Dq
0
2gT � fJcgfDp1, Dp2, Dq1, Dq2gT, �41�

where T is the transpose and Jc is the Jacobian matrix whose eigenvalues will
determine the stability of the system. The ®rst order solution of the system in
terms of pn , qn can be given by

u1 � p1 cos �o1t� q1 sin �o1t, u2 � p2 cos 3�o1t� q2 sin 3�o1t: �42, 43�

3. NUMERICAL RESULTS AND DISCUSSION

Since the system considered contains both cubic geometric (anklm) and inertial
(bnklm, g

n
klm) non-linearities, and is subjected to combination parametric resonance

along with internal resonance of 3:1, getting a closed-form solution for the
steady state response from the reduced equations (25)±(28) having many coupled
non-linear terms is very dif®cult. It may be noted that, with much simpler cases
[16, 17], the researchers have gone for a numerical solution to obtain the steady
state response curves. Hence, in this case, the non-trivial (n-t) steady state
response of the system is obtained by solving the reduced equations (25)±(28)

20

10

0

30

a
1

8

4

0

12

5.04.54.03.5 5.5

a
2

Figure 3. Frequency response curve for �� 2; key as in Figure 2.
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numerically using Newton's method [21] and the stability and bifurcation of the
trivial and n-t responses are studied from the eigenvalues of the Jacobian matrix
Jc . Here, the effects of damping �, amplitude G and frequency f of base
excitation, position b of an attached mass and mass ratio m on the system
response are studied. In the frequency and force response plots the stable and
unstable branches are indicated respectively by solid and broken lines.
From equations (33) and (34), it is clear that the ®rst mode will oscillate at a

frequency of �o1 � o1 � es1=4 and the second mode will oscillate at a frequency
exactly three times that of the ®rst one. Hence, a fractional harmonic pair of (1/4,
3/4) is observed in the system response. Except for Figures 8±11, all other
®gures are obtained with the data given in section 2.2. In Figures 8±11 the non-
linear, forcing and damping terms are obtained from the expressions in the
Appendix for the given system parameters m, b and J.
The steady state frequency response curve for undamped system with G� 10 is

shown in Figure 2. The trivial solution becomes unstable between f� 4�082 and
4�5814 with the end points having super- and sub-critical Hopf bifurcation (HB)
respectively. A very typical pitchfork type bifurcation occurs at f� 4�0 for the
®rst mode and at f� 4�4405 for the second mode where symmetry breaking
takes place without change of stability. These two curves are obtained assuming
no energy transfer between the participating modes, i.e., only single mode
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30
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5.04.54.03.5 5.5

a
2

Figure 4. Frequency response curve for z1� z2� z�1�; key as in Figure 3.
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oscillation takes place while the amplitude of the other mode is zero with
arbitrary phase combination. This case is not possible with the problems treated
by Nayfeh and Zavodney [16], and Streit et al. [17], where the solutions are
either trivial (a1� a2� 0) or non-trivial (a1 6� 0, a2 6� 0). The response curves
obtained from equations (29) and (30) are found to be unstable and physically
unattainable. Hence, the single mode bifurcating branches are not plotted in the
subsequent force or frequency response curves.
For the n-t branches of the response curve, HBs occur at f� 4�425 and

f� 4�99 and a saddle-node (s-n) bifurcation occurs at f� 4�482. One may
observe the jump-up from the trivial response at f� 4�082 and a jump down
from the n-t response at f� 4�99. Though the system is excited at a frequency
near about o1�o2 , the response amplitude of the ®rst mode dominates that of
the second mode. There are many other turning points in the unstable branches
which are not s-n bifurcation points as no stability change takes place at those
points.
It may be noted that the stability and bifurcation of the response curves in this

case differ widely from those of the principal parametric resonances [11, 19, 20].
While in the latter case, the trivial branch loses its stability by super- and sub-
critical pitch-fork bifurcations, in the former case, the loss of stability is due to
sub- and super-critical HBs. The bifurcations in the n-t branch which have their
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Figure 5. Frequency response curve for z1� z2� z�2�; key as in Figure 3.
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global origin from the trivial states differ accordingly. Similar observations can

also be made from references [16, 17].

With increase in damping (Figure 3, �� 2), HBs occur in the trivial branch at

f� 4�08 and 4�58 and in the n-t branch at f� 4�32 and 4�93. Hence, with

increase in damping the trivial stability boundary is least affected, while the n-t

bifurcation points shift towards the left.

The above results are obtained with different damping for the ®rst and second

modes. Considering the same damping in both the modes, as has been taken by

most of the researchers, in Figure 4, with z1� z2� z�1� and for same G and � as

in Figure 3, these critical points in the trivial branch occur at f� 4�17 and 4�5,
and in the n-t branch at f� 4�4 and 4�9. In Figure 4, z2 has a larger value

compared to that in Figure 3 which causes the shifting of the critical points and

narrowing of the unstable zones in both trivial and n-t branches. Also, the n-t

unstable branches of Figure 3 (except that between the HB points) coalesce to

form a single unstable branch. Now, considering z1� z2� z�2� (Figure 5) for the

same G and � as before, in the trivial state HB occurs at f� 4�09 and 4�58 and

in the n-t state at f� 4�39 and 5�14. As in the case of low damping (Figure 2), in

this case also s-n bifurcation occurs in the n-t branch. From these four ®gures

one may conclude that they are topologically equivalent, and hence the response
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Figure 6. Frequency response curve for perfect internal detuning, �� 0�02, with same non-
linear and forcing coef®cient as in Figure 2.
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curves with the same damping in both modes can be obtained from the case with
unequal damping by changing the values of the damping parameter �.
Keeping other system parameters constant, with o2� 3 and z1� z2� z�2�,

Figure 6 shows the frequency response curves for G� 10, �� 0�02. For the
perfectly tuned internal resonance case, the n-t branch is stable and in the trivial
branch HB is observed at f� 3�735 and 4�265. Though the n-t stable response
amplitude of the ®rst mode increases with the frequency of external excitation,
the response amplitude of the second mode decreases to zero at f� 4�55 and
again increases thereafter. At this point (f� 4�55) a1 has been found to have a
constant value irrespective of the value of o2 . For the negative detuning s2
(Figure 7), the curves are topologically equivalent to those of Figure 6. The
upper n-t branch of the ®rst mode is stable for values of negative s2 with a fold
type bifurcation point at the left extreme end of the stable branch. It has been
further observed that with an increase in s2 , this critical point shifts to the left in
the frequency response curve and the trivial instability zone shifts towards the
right.
Figure 8 is obtained with m� 4�8, b� 0�25, J� 0�9596 for which o2� 3�13526.

The critical points in the trivial branch are at f� 3�795 and 4�475, and in the n-t
one at 4�16 and 5�02. With an increase in m, o2 decreases and when the internal
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Figure 7. Frequency response curve for negative internal detuning, f� 2�9, �� 0�02; key as in
Figure 6.
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detuning s2 approaches zero (i.e., for near perfect internal tuning), the n-t

unstable and stable branches merge to form a single branch with the Hopf

bifurcation points (HBPs), as shown in Figure 9.

Table 1 shows the variation of critical points in the trivial and non-trivial

branches with m for b� 0�25, J� 0�95916, G� 10 and �� 0�5. While the left

Hopf bifurcation point (HBP(L)) shifts towards the left at a speed double that of

the right (HBP(R)), both left and right n-t HBPs move towards the left for

positive internal detuning s2 and towards the right for negative s2 . For the

system with very low and high values of positive s2 , s-n bifurcation occurs but,

for moderate values of positive s2 , no bifurcation other than Hopf is found in

the n-t branches. For negative s2 , the s-n bifurcation point in the n-t branch

moves towards the right with an increase in m.
Figures 10 and 11 show the in¯uence of b on frequency response for m� 4�0,

G� 10, �� 0�02 with b� 0�23 and 0�27, respectively. Also, Table 2 shows the

variation of critical points with b. Unlike in the variation of m, with increases in

b, both the trivial HBPs move with almost equal speed towards the left so that

the region of instability only shifts towards the left with little change in its

magnitude. With changes in b, variations of the non-linear terms are found to be

signi®cant, which in¯uence the nature and stability of the non-trivial response.
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Figure 8. Frequency response curve for m� 4�8, b� 0�25 and o2� 3�13526.
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The variation of the response amplitudes a1 and a2 with the amplitude of

base excitation G is shown in Figures 12±14. For the undamped system with

f<o1�o2 , e.g., f� 4�15 (Figure 12(a)), there are three distinct bifurcation

points, namely, the trivial HBP at G� 7�2 and the two n-t s-n bifurcation points
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Figure 9. Frequency response curve for m� 5�4, b� 0�25 and o� 3�13526.

TABLE 1

Variation of bifurcation points with m; b� 0�25, G� 10, �� 0�5
Trivial Non-trivial
response responsez�������������������}|�������������������{ z�����������������������������������}|�����������������������������������{

m o2 HBP(L) HBP(R) HBP(L) HBP(R) Others

3�6 3�3506 4�08 4�62 4�37 5�18 4�53 (s-n)
4�2 3�2317 3�92 4�54 4�28 5�10 ±
4�8 3�1352 3�79 4�48 4�16 5�02 ±
5�4 3�057 3�69 4�43 4�18 4�93 3�93 (s-n)
6�0 2�9927 3�6 4�38 4�26 4�87 4�16 (s-n)
6�6 2�9396 3�53 4�35 4�32 4�83 4�26 (s-n)
7�2 2�8955 ± 4�32 4�36 4�88 4�31 (s-n)
7�8 2�8592 ± 4�3 4�39 5�09 4�34 (s-n)
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at G� 2�35 and 2�75. With an increase in damping (Figure 12 (b)), only the

trivial HBP at G� 8�0 and an n-t s-n bifurcation at G� 5�2 are observed. Hence,

with an increase in damping, the trivial stability increases while the n-t (both

stable and unstable) branches disappear for lower values of G and an s-n

bifurcation occurs in the n-t branch.
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Figure 10. Frequency response curve for b� 0�23, m� 4�0 and o2� 3�33898.

TABLE 2

Variation of bifurcation points with b; m� 4�0, G� 10, �� 0�02
Trivial Non-trivial
response responsez�������������������}|�������������������{ z�����������������������������������}|�����������������������������������{

b o2 HBP(L) HBP(R) HBP(L) HBP(R) Others

0�23 3�339 4�05 4�63 3�96 4�64 ±
0�24 3�298 4�0 4�59 4�0 ± ±
0�25 3�268 3�97 4�57 4�32 5�14 ±
0�26 3�249 3�96 4�54 4�57 4�49 (s-n)
0�27 3�242 3�95 4�53 4�76 4�5 (s-n)
0�28 3�244 3�96 4�52 4�89
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With f�o1�o2 (Figure 13), for the undamped case, the trivial response is
unstable and in the n-t branch stability is restored by HB at G� 5�2. Also, as in
the previous case, another n-t branch becomes unstable by s-n bifurcation at
G� 5�7. Thus, with an increase in G, the response jumps up at this turning point
for the ®rst mode and jumps down for the second mode, while for reduction in
G, the response jumps down for the ®rst mode and jumps up for the second
mode at the HBP from one stable n-t branch to another. Hence, this region
between the Hopf and s-n bifurcation points is the region exhibiting bistability
and hysteresis phenomenon as the response depends on the direction of sweep of
the control parameter G. For �� 2, the trivial branch remains stable until
G� 4�7 where it loses its stability by HB. An interesting ring is formed with the
upper stable and lower unstable halves joined by s-n bifurcation points at
G� 6�5 and 8�3. So the system remains unstable from G� 4�7 to 6�5 and 8�3 to
11�2, where the stability is restored by HB. Thus, it is evident that damping has a
destabilizing effect on the system response. One may observe that, for
6�5EGE8�3, a2> a1; but, after the HBP, a25a1. Although the energy ¯ows from
the higher mode to the lower one in the cubic non-linear system, there is a
tendency of the higher mode to saturate.
Now with f>o1�o2 , e.g., f� 4�5 for an undamped system (Figure 14(a)),

the trivial branch becomes unstable by HB at G� 6�7, while at G� 5�9 both
stable and unstable n-t branches pitch-forked from the trivial branch. The n-t
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Figure 11. Frequency response curve for b� 0�27, m� 4�0 and o2� 3�2415.
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Figure 12. Variation of steady state response with G for f� 4�15. (a) �� 0, (b) �� 2.
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Figure 13. Force response curve for f� 4�33179. (a) �� 0; (b) �� 2.
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Figure 14. Variation of steady state response with G. (a) f� 4�5, �� 0; (b) f� 4�5, �� 2; (c)
f� 4�75, �� 0; (d) f� 4�75, �� 2.
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branches become unstable at G� 10�5 by s-n and at G� 0�9 and 13�7 by HB. In

this case also no stable branch exists between G� 10�5 and 13�7. With an

increase in damping (�� 2, Figure 14(b)), the trivial branch becomes unstable at

G� 7�6 and the n-t branch is stable between G� 4�7 and 5�1. So the system-

stability depends almost exclusively on the stability of the trivial state which

increases with an increase in damping, but the stability of the overall system

decreases. With a further increase in f, e.g., f� 4�75 for an undamped system

(Figure 14(c)), the trivial response remains stable until the trivial HBP at 16�7
and in the n-t branches s-n bifurcations at G� 0�1 and 18�7 and HB at G� 4�6
are observed. Since no stable branch exists to the right of the turning point at

G� 18�7, for increasing values of G the system suddenly becomes unstable

indicating the blue sky catastrophe phenomena. For a damped case (�� 2, Figure

14(d)), the trivial branch becomes unstable at G� 15�7 and the n-t branch

remains stable between G� 5�5 and 7�6. Hence, for f4o1�o2 , with an increase

in damping, both trivial and n-t stability decrease.
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Figure 15. (a) Time history showing trivial ®xed point response, obtained by directly integrat-
ing equations (37)±(39) at f� 4; ÐÐ, p1; . . . . . , p2. (b) Projection of the trajectory in p1±q2
plane. Key as in Figure 3.
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The response curves can also be obtained by directly integrating the reduced
equations (25)±(28) or (37)±(39). Figure 15(a) shows the time response plot for
the trivial ®xed point at f� 4, G� 10, �� 2 (Figure 3). As the trajectory in p1, q2
plane (Figure 15(b)), moves towards the ®xed point with time t!1, the ®xed
point is found to be stable. The time response for f� 4�15, G� 10, �� 2 is
shown in Figure 16 indicating a stable n-t ®xed point (a1� 20�787, a2� 3�3373,
g� 1�555, g2� 0�826) which is in good agreement with that in Figure 12(b). In
Figure 17(a), the periodic responses at f� 4�33179, G� 10, �� 0 arising due to
the super-critical HB (Figure 2) are shown. Figure 17(b) shows the projection of
the corresponding limit cycle trajectory on the a1±a2 plane. The non-linear
responses in the unstable regions which may be periodic, quasi-periodic or
chaotic are studied in Part II of this paper.

4. CONCLUSIONS

The non-linear response of a vertically base-excited slender beam with a
lumped mass is studied using the method of multiple scales. The stability and
bifurcation of the trivial and non-trivial branches for different values of damping
�, amplitude G and frequency f of base excitation are studied for various values
of mass ratio m and location parameter b. HB is found to occur in the trivial
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Figure 16. The results of time integration showing non-trivial ®xed point response for G� 10;
key as in Figure 12(b).
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branch and no symmetry-breaking pitch-fork bifurcation is observed in the
combination resonance. Also, non-trivial branch contains Hopf bifurcation
points and sometimes saddle-node bifurcation points which vary with G and �.
Though topologically equivalent response curves are obtained for different
values of m and b, the stability of the response curve differs very much with the
variation of b which alters the non-linear coef®cients considerably. With an
increase in damping the stability of the trivial state increases, but the overall
stability of the system decreases for f>o1�o2 and, for f<o1�o2 , some of the
stable and unstable branches disappear; but the system remains stable with the
trivial and/or non-trivial stable branches. For lower values of damping, the
system contains a number of solutions and multiple jump-phenomena are
observed. Hysteresis, saturation and blue sky catastrophe phenomena, fractional
harmonic pair and energy transfer from the higher mode to the lower mode are
observed in this system.
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APPENDIX

h11 �
�1
0

c2
n dx, h12 �

�1
0

d�xÿ b�c2
n dx,

h13 �
�1
0

d�xÿ b��cnx�2 dx � c2
nx�b�, h21 �

�1
0

c2
n dx � h11,

Rn � h11 � mh12 � Jl2h13, zn � z�n� � e
ch21

2eRnry1

� �
�,

h31 �
�1
0

c2
n dx, h32 �

�1
0

d�xÿ b�c2
n dx � h12 ,

h33 �
�1
0

�1ÿ x�c2
nx dx, h34 �

�1
0

�1
x

d�xÿ b� dxc2
nx dx,

y2n �
EIk4n
rL4Rn

�h31 � mh32� ÿ g

LRn
�h33 � mh34�,

fnm � f �nmG=e �
O2Zo

ey21RnL
�h33 � mh34�,

h41 � 1

2

�1
0

ckclxcmxcn dx, h42 � 1

2

�1
0

d�xÿ b�ckclxcmxcn dx,

h43 � 3

�1
0

ckxclxxcmxxxcn dx�
�1
0

ckxxclxxcmxxcn dx,

anklm �
EIl2

erL4Rny
2
1

fk4k�h41 � mh42� � h43g,

h51 �
�1
0

�1
x

�x
0

clZcmZ dZ
� �

dx
� �

ckxcnx dx,
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h52 �
�b
0

clxcmx dx

� � �b
0

ckxcnx dx

� �
,

h53 � fckxclxcmxcnxgx�b,

bnklm �
l2

eRn
fh51 � mh52 � Jl2h53g,

h61 � h51,

h62 � 1

2

�1
0

ckxclxcmcn dxÿ
�1
0

ckxclxx

�1
x

cm dx
� �

cn dx,

h63 � h52,

h64 � 1

2
�ckxclxcmcn�x�b ÿ cm�b�

�b
0

ckxclxxcn dx,

h65 � 1

2
h53,

gnklm �
l2

eRn
�h61 ÿ h62 � m�h63 ÿ h64� � Jl2h65�:

Expression for aenj , Q131, Q31

aenj � anj � bnj � gnj ,

anj � 3annnn , for j � n

� 2�annjj � anjjn � anjnj�, for j 6� n,

bnj � o2
nb

n
nnn, for j � n

� 2o2
j b

n
njj, for j 6� n,

gnj � ÿ3o2
ng

n
nnn, for j � n
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� ÿ2fo2
j �gnjnj � gnnjj� � o2

ng
n
jjng, for j 6� n,

Q131 � a1121 � a1211 � a1112
ÿ o2

1b
1
211 � o1o2�b1121 � b1112�

ÿ fo2
1�g1211 � g1121� � o2

2g
1
112g,

Q31 � a2111 ÿ o2
1�b2111 � g2111�:

The linear undamped mode shape cn(x) can be written in non-dimensional form
as

cn�x� � ��sinknxÿ sinhknx� ÿ L�cos knxÿ cosh knx��
�U�xÿ b�f�h1 ÿ Lh2��sin kn�xÿ b� ÿ sinhkn�xÿ b��
� �h3 ÿ Lh4��coskn�xÿ b� ÿ coshkn�xÿ b��g,

where h1, h2, h3, h4 and L are de®ned in reference [20], U is the unit step
function, cn(x) is the eigenfunction of the nth mode, and Yn is the nth linear
natural frequency of the system which is given by

Y2
n �

EI

r
kn
L

� �4
:

kn is the eigenvalue of the nth mode of vibration obtained from the solution of
the transcendal equation

4�h1h4 ÿ h2h3�
l2mJ

� 2k4�1ÿ cos kb cosh kb�

� 2k3

m
�h1�sin kb� sinhkb� � h2�cos kbÿ coshkb��

� 2k

Jl2
�h4�sin kbÿ sinhkb� ÿ h3�cos kbÿ coshkb�� � 0:
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